Robot Path Planning Based on Simulated Annealing and Artificial Neural Networks

نویسنده

  • Xianmin Wei
چکیده

As for the limitations of algorithms in global path planning of mobile robot at present, this study applies the improved simulated annealing algorithm artificial neural networks to path planning of mobile robot in order to better the weaknesses of great scale of iteration computation and slow convergence, since the best-reserved simulated annealing algorithm was introduced and it was effectively combined with other algorithms, this improved algorithm has accelerated the convergence and shortened the computing time in the path planning and the global optimal solution can be quickly obtained. Because the simulated annealing algorithm was updated and the obstacle collision penalty function represented by neural networks and the path length are treated as the energy function, not only does the planning of path meet the standards of shortest path, but also avoids collisions with obstacles. Experimental results of simulation show this improved algorithm can effectively improve the calculation speed of path planning and ensure the quality of path planning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing Path for Robot Arm Extensions Series with the Aim of Avoiding Obstruction with Recurring Neural Network

In this paper, recurrent neural network is used for path planning in the joint space of the robot with obstacle in the workspace of the robot. To design the neural network, first a performance index has been defined as sum of square of error tracking of final executor. Then, obstacle avoidance scheme is presented based on its space coordinate and its minimum distance between the obstacle and ea...

متن کامل

Navigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network

Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...

متن کامل

Neural Networks Based Path Planning and Navigation of Mobile Robots

The path planning for mobile robots is a fundamental issue in the field of unmanned vehicles control. The purpose of the path planner is to compute a path from the start position of the vehicle to the goal to be reached. The primary concern of path planning is to compute collision-free paths. Another, equally important issue is to compute a realizable and, if possible, optimal path, bringing th...

متن کامل

An Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network

RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...

متن کامل

Forward kinematic analysis of planar parallel robots using a neural network-based approach optimized by machine learning

The forward kinematic problem of parallel robots is always considered as a challenge in the field of parallel robots due to the obtained nonlinear system of equations. In this paper, the forward kinematic problem of planar parallel robots in their workspace is investigated using a neural network based approach. In order to increase the accuracy of this method, the workspace of the parallel robo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013